Cho các hàm số \(f\left(x\right)=x^2+2+\sqrt{2-x};g\left(x\right)=-2x^3-3x+5\)
\(u\left(x\right)=\left\{{}\begin{matrix}\sqrt{3-x};\left(x< 2\right)\\\sqrt{x^2-4};\left(x\ge2\right)\end{matrix}\right.\)
\(v\left(x\right)=\left\{{}\begin{matrix}\sqrt{6-x};\left(x\le0\right)\\x^2+1;\left(x>0\right)\end{matrix}\right.\)
Tính các giá trị \(f\left(-2\right)-f\left(1\right);f\left(-7\right)-g\left(-7\right);f\left(-1\right)-u\left(-1\right);u\left(3\right)-v\left(3;\right)v\left(0\right)-g\left(0\right);\dfrac{f\left(2\right)-f\left(-2\right)}{v\left(2\right)-v\left(-3\right)}\) ?
Bài 1. Cho hàm số y= f(x)= {-2(x2 + 1) khi x ≤ 1 Tính f(1);f(2),f(√2 phần 2);f(√2)
{4√x-1 khi x > 1
Bài 2.Cho hàm số y= f(x)= { √-3x+8 khi x < 2 Tính f(-3);f(2);f(1),f(9)
{√x+7 khi x ≥ 2
Tìm tập xác định của các hàm số sau:
a) y=\(\sqrt{2x-3}\) b) y= \(\sqrt{\left|2x-3\right|}\) c) y= \(\sqrt{4-x}+\sqrt{x+1}\) d) y=\(\sqrt{x-1}+\frac{1}{x-3}\) e) y=\(\frac{1}{\left(x+2\right)\sqrt{x-1}}\)
f) y=\(\sqrt{x+3-2\sqrt{x+2}}\) g) y=\(\frac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\) h) y=\(\sqrt{2x-1}+\sqrt{\frac{1}{3-x}}\) i) y= \(\sqrt{x+3}+\frac{1}{x^2-4}\)
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
xét tính chẵn lẻ của các hàm số sau:
a) g(x)= \(\sqrt{(x)^{4}-2x+3} - \sqrt{(x)^{4}+2x+3}\)
b) h(x)= \(\sqrt[3]{x+1} -\sqrt[3]{x-1} \)
Cho 2 hàm số f(x)=ax+\(\sqrt{3}\) (a≠0) và hàm số g(x)= (a2-1)x-1
chứng minh rằng:
a, Hàm số f(x)+g(x) và hàm số g(x)-f(x) là các hàm số đồng biến trên R
b, Hàm số f(x)-g(x) là hàm số nghịch biến trên R
nhờ giúp mk với
a , biết f(x)=(2x-1) x f(x-2) với x > 0,5 tính f(6) , f(8) nếu f(0) = -2
tập xác định hàm số
a, y=\(\sqrt{x^2+x-4}\)
b , y = \(\frac{1}{x^2+1}\)
c , y=\(\frac{\left|2x-3\right|}{x^2+x+6}\)
d , y =\(\frac{1}{x^2-3x}\)
e , y =\(\sqrt{1-x}\) +\(\frac{1}{x\sqrt{1}+x}\)
f , \(\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g, y = \(\frac{x^2+1}{\sqrt{2-5}}\) + \(\frac{1}{x^2-1}\)
h , y= \(\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(\sqrt{6-x}\)+2x\(\sqrt{2x+1}\)
j, y = \(\sqrt{3+x}\) +\(\frac{1}{x^2-1}\)
k, y = \(\frac{1}{x^2+3x+3}\)+(x+2)\(\sqrt{x+3}\)
l, y =\(\sqrt[3]{\frac{3x+5}{x^2-1}}\)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.