\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{x+z+t}+1=\frac{z}{x+y+t}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x}{x+y+z+t}=\frac{y}{x+y+z+t}=\frac{z}{x+y+z+t}=\frac{t}{x+y+z+t}\)
\(\Rightarrow x=y=z=t\) Thay vào p ta được
\(p=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)
=> p là số nguyên (đpcm)