Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Tính giá trị của các biểu thức
a, A=\(\frac{x+2+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\) tại x=5
b, B=\(\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\) tại x=\(-\frac{1}{2}\)
Giải các phương trình:
a) \(\left(3x-1\right)\left(3x+1\right)=x\left(1+8\sqrt{x+1}\right)\)
b) \(5x^2-5x\sqrt{x^2+x+4}+2x+5=0\)
c) \(9x^2+8x+9=9\left(x+1\right)\sqrt{2x^2+1}\)
d) \(5x^2+2x+2=5x\sqrt{x^2+x+1}\)
e) \(5x^2+20x-12=5\left(x-2\right)\sqrt{3x^2+x}\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Giải phương trình
1.\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
2. \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
3. \(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)
4. \(\left(x^2+3x-4\right).\left(x^2+x-6\right)=24\)
a. \(2x^2-8x-3\sqrt{x^2-4x-5}=12\)
b. \(\left(x-3\right)\left(x+2\right)-3\sqrt{x^2-x+1}+9=0\)
c. 12\(-\sqrt{4-3x}=|3x-4|\)
d. \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
rút gọn :
\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right)=\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{x+\sqrt{x}-6}\)
bài 1
P=\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x-6}}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
rút gọn biểu thức P