Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x_1-1}{10}=.....=\frac{x_{10}-10}{1}=\frac{\left(x_1+x_2+....+x_{10}\right)-\left(1+2+3+...+10\right)}{1+2+3+...+10}\)
\(=\frac{45}{55}=\frac{9}{11}\)
Giải ra ta được
\(x_1=\frac{101}{11}\)
\(x_2=\frac{103}{11}\)
........
\(x_{10}=\frac{119}{11}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:: \(\frac{x_1-1}{10}=\frac{x_2-2}{9}=...=\frac{x_9-9}{2}=\frac{x_{10}-10}{1}=\frac{x_1-1+x_2-2+...+x_9-9+x_{10}-10}{10+9+...+2+1}\)
\(=\frac{\left(x_1+x_2+..+x_9+x_{10}\right)-\left(1+2+...+9+10\right)}{10+9+...+2+1}=\frac{100-55}{55}=\frac{9}{11}\)
=> \(\frac{x_1-1}{10}=\frac{9}{11}\Leftrightarrow x_1-1=\frac{10\cdot9}{11}\Leftrightarrow x_1=\frac{90}{11}+1=\frac{101}{11}\)
\(\frac{x_2-2}{9}=\frac{9}{11}\Leftrightarrow x_2-2=\frac{9\cdot9}{11}\Leftrightarrow x_2=\frac{81}{11}+2=\frac{103}{11}\)
Tương tự ta cũng có:
\(x_3=\frac{105}{11}\)
\(x_4=\frac{107}{11}\)
\(x_5=\frac{109}{11}\)
\(x_6=\frac{111}{11}\)
\(x_7=\frac{113}{11}\)
\(x_8=\frac{115}{11}\)
\(x_9=\frac{117}{11}\)
\(x_{10}=\frac{119}{11}\)