Cho a,b,c là các số dương tùy ý. CMR \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
Cho a,b,c > 0 thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). CMR:
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
1 . Giải phương trình : \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2 . Cho a,b,c là ba số thực dương thỏa mãn \(a^2+b^2+c^2=3\) . CMR : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge ab+bc+ca\)
Cho a,b,c > 0 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\) ≥ \(\frac{1}{2}\). CMR
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\) ≥ \(\sqrt{3}\)
Cho a+b+c=1. Tìm GTLN của
\(A=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho a,b,c > 0 và a + b + c = 2019
Tìm GTNN của
S = \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca=a^2}\)
Cho a+b+c=1. Tìm GTLN của
\(A=\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\)
Cho các số dương a,b,c thỏa mãn a+b+c=2. Tìm GTLN của biểu thức:
Q = \(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)