Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
BIN

\frac{3}{x-3}-\frac{6x}{9-x^2}+\frac{x}{x+3}

tìm điều kiện xác định 

rút gọn

tính x=5

Trần Ái Linh
5 tháng 12 2021 lúc 16:36

ĐK: `x \ne 3; x \ne -3`

`A=3/(x-3)-(6x)/(9-x^2)+x/(x+3)`

`=3/(x-3)+(6x)/(x^2-9)+x/(x+3)`

`=3/(x-3)+(6x)/((x-3)(x+3))+x/(x+3)`

`=(3(x+3)+6x+x(x-3))/((x-3)(x+3))`

`=(3x+9+6x+x^2-3x)/((x+3)(x-3))`

`=(x^2+6x+9)/((x-3)(x+3))`

`=((x+3)^2)/((x-3)(x+3))`

`=(x+3)/(x-3)`

`x=5 => A=(5+3)/(5-3)=4`

ILoveMath
5 tháng 12 2021 lúc 16:38

ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\9-x^2\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x^2\ne9\\x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(3-x\right)\left(3+x\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x+3}{x-3}\)

Thay x=5 vào \(\dfrac{x+3}{x-3}=\dfrac{5+3}{5-3}=\dfrac{8}{2}=4\)


Các câu hỏi tương tự
Đào Danh Bắc
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Đã Ẩn
Xem chi tiết
Quỳnh Phương
Xem chi tiết
Châu Hiền
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Minh Ngân Nguyễn
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết