ĐK: `x \ne 3; x \ne -3`
`A=3/(x-3)-(6x)/(9-x^2)+x/(x+3)`
`=3/(x-3)+(6x)/(x^2-9)+x/(x+3)`
`=3/(x-3)+(6x)/((x-3)(x+3))+x/(x+3)`
`=(3(x+3)+6x+x(x-3))/((x-3)(x+3))`
`=(3x+9+6x+x^2-3x)/((x+3)(x-3))`
`=(x^2+6x+9)/((x-3)(x+3))`
`=((x+3)^2)/((x-3)(x+3))`
`=(x+3)/(x-3)`
`x=5 => A=(5+3)/(5-3)=4`
ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\9-x^2\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x^2\ne9\\x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(3-x\right)\left(3+x\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x+3}{x-3}\)
Thay x=5 vào \(\dfrac{x+3}{x-3}=\dfrac{5+3}{5-3}=\dfrac{8}{2}=4\)