Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
1, \(x^3-x-3=2\sqrt{6x-x^2}\)
2, \(x^3+6x^2-171x-40\left(x+1\right)\sqrt{5x-1}+20=0\)
3, \(\sqrt[3]{x+3}+\sqrt[3]{x-3}=\sqrt[5]{x-5}+\sqrt[5]{x+5}\)
4. \(\left(\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{x+1}\right)^2=\frac{4\left(1+\sqrt{1+4x}\right)}{x+1+\sqrt{x^2+3x+2}}\)
Giải phương trình
\(\sqrt[4]{(x-1)^2} - \sqrt[4]{(x+1)^2} = \frac{3}{2} \sqrt[4]{x^2 -1}\)
1.\(\sqrt{\frac{\left(1-x\right)}{x}}=\frac{\left(2x+x^2\right)}{1+x^2}\)
2. 3(2-\(\sqrt{x+2}\))=2x+\(\sqrt{x+6}\)
3. \(\sqrt[3]{x+2}+\sqrt[3]{x+1}=\sqrt[2]{2x^2}+\sqrt[3]{2x^2+1}\)
4. \(\sqrt[3]{x+24}+\sqrt{12-x}=6\)
Toán 10 ạ, giúp em với
cho biểu thức B=\(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{8\sqrt{x}+8}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\frac{x+\sqrt{x}+3}{2+2\sqrt{x}}+\frac{1}{\sqrt{x}}\right)\)so sánh \(B^{2019}\)với 1
Cho A = \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{x^2+\sqrt{x}}{x-\sqrt{x+1}}\)
Rút gọn B= 1-\(\sqrt{2}\sqrt{A+2x+\frac{1}{2}}\) với 0 \(\le\)x\(\le\)1/4
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)
\(2\sqrt{\frac{x}{x^2+3}}=\frac{1+2\sqrt{1-x}}{1+\sqrt{1-x^2}}\)
Giải phương trình:
1) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2\left(2x+\frac{1}{2x}\right)-3\)
2) \(\frac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
Giải: \(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9}-1}{x}\)