CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)
Bài 1: Tính:
a) \(A=4\cos^2\alpha-6\sin^2\alpha\) biết \(\sin\alpha=\frac{1}{5}\)
b) \(B=\sin\alpha.\cos\alpha\) biết \(\tan\alpha+\cot\alpha=3\)
c) \(C=\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\) biết \(\sin\alpha=\frac{3}{4}\)
Cm:a, 1+ \(\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b, 1+\(\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
CMR:
\(a.tan^2\alpha+1=\dfrac{1}{cos^2\alpha}\)
b)\(cot^2\alpha+1=\dfrac{1}{sin^2\alpha}\)
c)\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
a, Cho cos α = 0,8. Hãy tính: sin α, tan α, cot α ?
b, Hãy tìm sin α, cos α, biết tan α = \(\frac{1}{3}\)
Rút gọn biểu thức:
\(A=\sin^210+\sin^220+\sin^230+\sin^280+\sin^270+\sin^260\)
\(B=\left(1+\tan^2\alpha\right)\left(1-\sin^2\alpha\right)+\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)