Hàm số liên tục tại mọi điểm khác 0 và 2
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+1\right)=1\)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x-1\right)^3=-1\)
\(\Rightarrow\lim\limits_{x\rightarrow0^-}f\left(x\right)\ne\lim\limits_{x\rightarrow0^+}f\left(x\right)\)
\(\Rightarrow f\left(x\right)\) gián đoạn tại \(x_0=0\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\left(x-1\right)^3=1\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(\sqrt{x}-1\right)=\sqrt{2}-1\)
\(\Rightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)\ne\lim\limits_{x\rightarrow2^+}f\left(x\right)\Rightarrow\) hàm số gián đoạn tại \(x_0=2\)