Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)
=>x-7=0=>x=7 => Là nghiệm của phương trình .
Thế x=7 vào biểu thức , ta có :
\(7^3+k.7^2+\left(4-k\right).7-35\)
=\(343+49k+28-7k-35=>42k=-336=>k=-8\)
Vậy k=-8
Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)
=>x-7=0=>x=7 => Là nghiệm của phương trình .
Thế x=7 vào biểu thức , ta có :
\(7^3+k.7^2+\left(4-k\right).7-35\)
=\(343+49k+28-7k-35=>42k=-336=>k=-8\)
Vậy k=-8
find the smallest positive integer k for which \(\sqrt{6075\cdot k}\) is a whole number
Answer : the smallest positive integer k is ......
2. find the value of k such that the remainder is the greatest
k/13= 11Rx
K=
give that \(x^4+ax+b\) is divisible by \(x^2-4\) . find the value of a +b
Suppose that the polynomial f(x) = x5 - x4 - 4x3 + 2x2 + 4x + 1 has 5 solutions x1; x2; x3; x4; x5. The other polynomial k(x) = x2 - 4.
Find the value of P = k(x1) x k(x2) x k(x3) x k(x4) x k(x5)
Answer: P = .............
Suppose that the polynomial f(x) = x5 - x4 - 4x3 + 2x2 + 4x + 1 has 5 solutions x1; x2; x3; x4; x5. The other polynomial k(x) = x2 - 4. Find the value of P = k(x1) x k(x2) x k(x3) x k(x4) x k(x5)
The product of the whole numbers from 1 to 122 is divisible by 22n. Find the greatest possible value of the whole number n.
Find the value of n such that \(A=n^3-2n^2+2n-4\) is a prime number. The value of n is...
Given that f(x)=x^4+ax^3+b is divisible by g(x)=x^2-1. Find a+b
Given the rectangle ABCD and the triangle BEC. Find the value of x such that the ratio of the area of the rectangle to the area of the triangle BEC is 7:3.
Answer: x = ....... cm.
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.