\(22^n=2^n.11^n\)
\(122!=1.2...11...22...33...44...55...66...77...88...99...110...121\)
\(=11^{11}.A\)
\(\Rightarrow n_{max}=11\)
\(22^n=2^n.11^n\)
\(122!=1.2...11...22...33...44...55...66...77...88...99...110...121\)
\(=11^{11}.A\)
\(\Rightarrow n_{max}=11\)
The average of three numbers is 42. All three are whole positive number and are different from each other.
If the least number is 20, what could be the greatest possible number of the remaining two numbers?
Answer: ......
Question 1:In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is____
Q2:Find the highest common factor of 147x and 98y if HCF(x;y)=1
Q3: A pattern of triangles is made from matches shown as follows
if there are 207 matches used, how many triangles has been formed
in a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is
Question 1: Find the highest common factor of 147x and 98y if HCF(x;y)=1.
Question 2: In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is______
Question 3: A pattern of triangle is made from matches shown as follows:
If there 2017 matches used, how many triangles has been formed?
P/s: Please help me! If possible, write the detail answer! Thanks for your help!!!
find the smallest positive integer k for which \(\sqrt{6075\cdot k}\) is a whole number
Answer : the smallest positive integer k is ......
2. find the value of k such that the remainder is the greatest
k/13= 11Rx
K=
In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is
In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is \
Bài toán Violympic thách thức mọi thời đại bởi độ khó cực kì và khó hiẻu
Given three consecutive even natural numbers, which have the product of last two numbers is 80 greater than the product of first two numbers.
Find the largest number.