x^3+27+(x+3).(x-9)
phân tích đa thức thành nhân tử
\(x^3+27+(x+3)(x+9)\)
\(= (x^3+27)+(x+3)(x+9)\)
\(=(x+3)(x^2-3x+9) + (x+3)(x-9)\)
\(=(x+3)(x^2-3x+9+x-9) \)
\(=(x+3)(x^2-2x)\)
\(=x(x+3)(x-2)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)
\)
\(=\left(x+3\right)\left(x^2-2x\right)\)