a) e= \(\dfrac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}\right)\)(xkhac0;1)
\(\Leftrightarrow e=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(\Leftrightarrow e=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\left(\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow e=\)\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow e=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(\Leftrightarrow e=\dfrac{x}{\sqrt{x}-1}\)
vậy e=\(\dfrac{x}{\sqrt{x}-1}\)
b )ta có e>1\(\Leftrightarrow\dfrac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow x>\sqrt{x}-1\)
\(\Leftrightarrow x-\sqrt{x}+1>0\)
vì x-\(\sqrt{x}-1>0\) với mọi x khác 0 và khác 1
d: Để E là số nguyên thì \(x-1+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1\right\}\)
hay \(x=4\)
e: Để E=9/2 thì \(\dfrac{x}{\sqrt{x}-1}=\dfrac{9}{2}\)
=>\(2x-9\sqrt{x}+9=0\)
=>2x-3 căn x-6 căn x+9=0
=>2 căn x-3=0
hay x=9/4