Giả sử đường tròn cố định là d tiếp xúc có tâm \(I\left(x;y\right)\) và bán kính R
\(\Rightarrow d\left(I;d\right)=R\) với mọi a
\(\Rightarrow\dfrac{\left|x.cosa+y.sina+2sina-3cosa+4\right|}{\sqrt{cos^2a+sin^2a}}=R\)
\(\Leftrightarrow\left|\left(x-3\right)cosa+\left(y+2\right)sina+4\right|=R\)
Đẳng thức đúng với mọi a khi và chỉ khi:
\(\left\{{}\begin{matrix}x-3=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\) \(\Rightarrow I\left(3;-2\right)\) và \(R=4\)