Cho ∆ABC. Dựng bên ngoài ∆ABC các tam giác đều BCD, ACE. Dựng ∆DEF đều sao cho F và C nằm khác phía đối với đường thẳng AB. Chứng minh rằng : ACBF là hình bình hành?
dựng phía ngoài tam giác abc những hình bình hành ABDE,ACFG (D và F là những đỉnh đối diện cớ ).kéo dài trung tuyến AM của tam giác ABC một đoạn MA'=AM .CMR :
A)tam giác ABA'=tam giác AGE
B)AM cắt EG tại N .cmr NA vuông góc GE
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Chứng minh rằng:
a)Tứ giác AMCK là hình bình hành.
b)Tứ giác ABMK là hình gì?Vì sao?
c)Trên tia đối của tia MA lấy điểm E sao cho ME=MA. Chứng minh tứ giác ABEC là hình thoi.
d)Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành
: Cho tam giác ABC, hai đường trung tuyến BM, CN cắt nhau tại G. Gọi E, F lần lượt là trung điểm của GB và GC. a) Chứng minh tứ giác BCMN là hình thang; b) Chứng minh tứ giác EFMN là hình bình hành. c) Nếu tam giác ABC cân tại A có o A 50 thì tứ giác BCMN là hình gì? Tính các góc của tứ giác BCMN
Cho tam giác ABC vuông tại A có M là trung điểm của BC, I là một điểm bất kì nằm trên AC ( I khác A và C), N là điểm đối xứng của I qua M. a) Chứng minh tứ giác BICN là hình bình hành b) Biết AB = 12cm, AC = 16cm. Tính độ dài AM?.
tam giác abc. về phía ngoài của tam giác dựng tam giác đều ACE TRên nửa mặt phẳng bờ AB chứa C vẽ tam giác đều ABD H,I,K lần lượt là TĐ AB AE CD CMR HIK đều
Cho tam giác ABC cân tại A.Gọi D, E,F lần lượt là trung điểm của AB, BC,CA.
a, CM: DE là đường trung bình của tam giác ABC.Tính BE biết BC=8cm
b,Cm: tam giác DECF là hình bình hành
c,Gọi H là điểm đối xứng với điểm F qua điểm D. CM tam giám AHBF là hình chữ nhật.