Ta có: \(\dfrac{x^3+8}{x^2-2x+4}=x+2\)
\(\Rightarrow\left(x^3+8\right)=\left(x^2-2.x+2^2\right)\left(x+2\right)\)
\(\Rightarrow x^3+8=x^3+8\)
\(\rightarrowđpcm.\)
Ta có : \(\dfrac{x^3+2^3}{x^2-2x+4}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2\left(đpcm\right)\)
\(\dfrac{x^3+8}{x^2-2x+4}=x+2\)
\(\rightarrow\left(x^2-2x+4\right)\left(x+2\right)=x^3+8\)
\(\rightarrow x^3+8=x^3+8\left(đpcm\right)\)