Pt hoành độ giao điểm:
\(\left|2x+3\right|=3x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left(2x+3\right)^2=\left(3x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left(x-2\right)\left(5x+4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left[{}\begin{matrix}x=2\\x=-\frac{4}{5}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy đồ thị 2 hàm số có 1 giao điểm