Cho hàm số y=f(x)y=f(x)xác định trên D
- Hàm số y=f(x)y=f(x)được gọi là đồng biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)
- Hàm số y=f(x)y=f(x)được gọi là nghịch biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)>f(x2)
Cho hàm số y=f(x)y=f(x)xác định trên D
- Hàm số y=f(x)y=f(x)được gọi là đồng biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)
- Hàm số y=f(x)y=f(x)được gọi là nghịch biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)>f(x2)
Phát biểu các điều kiện cần và đủ để hàm số \(f\left(x\right)\) đơn điệu trên một khoảng ?
Nêu sơ đồ khảo sát sự biến thiên và vẽ đồ thị của hàm số ?
Tìm \(a\in\left(0;2\pi\right)\) để hàm số \(y=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(1+2\cos a\right)x^2+2x\cos a+1\) đồng biến trên khoảng \(\left(1;+\infty\right)\) ?
Cho hàm số :
\(y=\dfrac{\left(2+m\right)x+m-1}{x+1}\) (1)
a) Khảo sát sự biến thiên và vẽ đồ thi của hàm số với m = 2
b) Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m\in\mathbb{Z}\)
Cho hàm số :
\(y=-\dfrac{1}{3}x^3+x^2+m-1\)
a) Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị. Xác định m để một trong những điểm cực trị đó thuộc trục Ox
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m=\dfrac{1}{3}\)
c) Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó vuông góc với đường thẳng \(y=\dfrac{1}{3}x-2\)
d) Tính diện tích hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng \(x=0;x=2\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số \(y=\dfrac{4x+4}{2x+1}\)
b) Từ (C) suy ra đồ thị của hàm số \(y=\left|\dfrac{4x+4}{2x+1}\right|\)
c) Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó song song với đường thẳng \(y=-\dfrac{1}{4}x-3\)
Cho hàm số :
\(y=-x^3+3x-2\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của (C) tại điểm \(M\left(1;0\right)\)
c) Biện luận theo m số nghiệm của phương trình : \(-x^3+3x-2=\log_3m\)
Cho hàm số \(y=\dfrac{2}{2-x}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Tìm các giao điểm của (C) và đồ thị của hàm số \(y=x^2+1\). Viết phương trình tiếp tuyến của (C) tại mỗi giao điểm
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng \(y=0;x=0;x=1\) xung quanh trục Ox
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
\(y=\dfrac{4x-5}{x-1}\)
b) Tính diện tích hình phẳng giới hạn bởi (C), tiếp tuyến của (C) tại A(2;3) và đường thẳng \(x=4\)