a) x2 + 4xy + 2y = ( x + 2y ) 2
b) 9x2 - 24xy + 16y2 = ( 3x - 4y ) 2
a) x2 + 4xy + 2y = ( x + 2y ) 2
b) 9x2 - 24xy + 16y2 = ( 3x - 4y ) 2
giúp nha . cần gấp
1.điền các đa thức sau vào chỗ chấm : (số có mũ )
A . \(^{y^{ }2+6xy+....=\left(y+....\right)^{ }2}\)
B. \(^{4x^{ }2-12xy+....=\left(...-....\right)^{ }2}\)
C. \(\left(x-...\right)\left(x+...\right)=\left(....\right)^2-4\)
D. \(\left(...+....\right)\left(....-1\right)=16x^2-1\)
E. \(x^3+...=\left(...+1\right)\left(...-...+...\right)\)
F. \(x^3+9x^2+....+...=\left(x+...\right)^3\)
Tìm GTNN :
\(A=5x^2+2y^2+2xy-26x-16y+54\)
\(B=\left(x+2y\right)^2+\left(x-4\right)^2+\left(y-1\right)^2-27\)
Tính
a/ \(\left(x-3\right)\left(x^2+3x+9\right)\)
b/ \(\left(x-2\right)\left(x^2+2x+4\right)\)
c/ \(\left(x+4\right)\left(x^2-4x+16\right)\)
d/ \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
e/ \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
f/ \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
Bài 1 :
a) \(\left(6x^2+\frac{1}{3}\right)^2\)
b) \(\left(5x-4y\right)^2\)
c) \(\left(2x^2y-3y^2x\right)^2\)
d) \(\left(5x-3\right).\left(5x+3\right)\)
e) \(\left(-4xy-5\right).\left(5-4xy\right)\)
f) \(\left(a^2b+ab^2\right).\left(ab^2-a^2b\right)\)
g) \(\left(3x-4\right)^2+2.\left(3x-4\right).\left(4-x\right)+\left(4-x\right)^2\)
h) \(\left(a^2+ab+b^2\right).\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
\(\left(\dfrac{1}{2}x+y\right).\left(......-......+......\right)=\dfrac{x^3+8y^3}{8}\)
điền đơn thức phù hợp vào chỗ trống :000
1. tính
a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)
b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)
c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)
d) \(\left(\dfrac{1}{2}x-2y\right)^3\)
e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)
f) \(27x^3-8y^3\)
g) 4(2x - 3y) - 4 - (2x-3y)2
2. rút gọn
a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)
b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)
3. c/m các biểu thức sau ko phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
4. Tìm x
a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)
b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
c) \(49x^2+14x+1=0\)
d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
5. c/m biểu thức luôn dương:
a) \(A=16x^2+8x+3\)
b) \(B=y^2-5y+8\)
c) C= \(2x^2-2x+2\)
d) \(D=9x^2-6x+25y^2+10y+4\)
6. Tìm GTLN và GTNN của các biểu thức sau
a) \(M=x^2+6x-1\)
b) \(N=10y-5y^2-3\)
7. thu gọn
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
Chứng minh:
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
b) \(\left(-a-b\right)^2=\left(a+b\right)^2\)
c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc hiệu
f) \(2xy^2+x^2y^2+1\)
g) \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1\)
h) \(16-8\left(x-3y\right)+\left(x-3y\right)^2\)
i) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
j) \(\left(x+y-z\right)^2+\left(y-z\right)^2+2\left(x+y-z\right)\left(z-y\right)\)
Rút gọn biểu thức:
1) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)+2y^3\)
2) \(\left(x-1\right)^3+\left(1-x\right)\left(x^2+x+1\right)+3\left(3-x\right)\left(3+x\right)\)