\(\dfrac{y^2}{x^2+xy}+\dfrac{xy}{x^2+xy}\)
\(=\dfrac{y^2+xy}{x\left(x+y\right)}\)
\(=\dfrac{y\left(x+y\right)}{x\left(x+y\right)}=\dfrac{y}{x}\)
\(\dfrac{y^2}{x^2+xy}+\dfrac{xy}{x^2+xy}\)
\(=\dfrac{y^2+xy}{x\left(x+y\right)}\)
\(=\dfrac{y\left(x+y\right)}{x\left(x+y\right)}=\dfrac{y}{x}\)
Tìm điều kiện của và y để biểu thức sau có giá trị dương: \(A=\left(\dfrac{x^2-xy}{y^2+xy}+\dfrac{x^2-y}{x^2+xy}\right):\left(\dfrac{y^2}{x^2-xy^2}+\dfrac{1}{x-y}\right)\)
1. Tìm GTNN của \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}-\dfrac{x^2-2}{x^2-x}\right)\) khi x>1
2. Cho biểu thức: \(B=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy}\right):\dfrac{x^2-xy+y^2}{x-y}\)
a. Rút gọn B
b. Tìm giá trị của B với |2x-1|=1 và |y+1|=1/2
rút gọn:\(\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}\cdot\dfrac{y-x}{x+y}\)
Thực hiện phép tính:
a, \(\dfrac{x^2-1}{2x-y}+\dfrac{3x^2-3}{y-2x}-\dfrac{2x^2+7}{y-2x}\)
\(b,\dfrac{x+y}{1-xy}+\dfrac{x-y}{1-xy}-\dfrac{2x-3y}{xy-1}\)
Rút gọn
\(A=\left(\dfrac{x-y}{2y-x}+\dfrac{x^2+y^2+y-2}{2y^2+xy-x^2}\right):\dfrac{4x^2+4x^2y+y^2-4}{x^2+y+xy+x}\)
Rút gọn biểu thức:
\(a,\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right):\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(b,\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y-x}\right):\dfrac{2y}{x-y}\)
Thực hiện phép tính:
a, \(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}\)
\(b,\dfrac{2x}{x^2+2xy}-\dfrac{y}{2y^2-xy}+\dfrac{4y}{x^2-4y^2}\)
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).