Giải phương trình :
a. \(\dfrac{3x+4}{x-2}-\dfrac{1}{x+2}=\dfrac{4}{x^2-4}+3\)
b. \(\dfrac{3x^2-2x+3}{2x-1}=\dfrac{3x-5}{2}\)
c. \(\sqrt{x^2-4}=x-1\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)
Giải các phương trình sau :
a)\(\left|\dfrac{x+5}{-x^2+9}\right|=2\)
b)\(\dfrac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
c)\(^{x^2-6x+9=4\sqrt{x^2-6x+6}}\)
d)\(\sqrt{x-3}=\dfrac{2}{\sqrt{x}-2}\)
e)\(\sqrt{x+1}=8-\sqrt{3x+1}\)
f')(x-2)\(\sqrt{2x+7}=x^2-4\)
g)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
h)\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
i) \(\sqrt{x+4}-\sqrt{3x+1}+2\sqrt{3x^2+13x+4}=51-4x\)
k)\(\dfrac{x-2}{1-x}+\dfrac{x-3}{x+1}=\dfrac{x^2+4x+15}{x^2-1}\)
Hãy viết điều kiện của mỗi phương trình :
a) \(\sqrt{-3x+2}=\dfrac{2}{x+1}\)
b) \(\sqrt{x-2}+x=3x^2+1-\sqrt{-x-4}\)
c) \(\dfrac{3x+5}{\sqrt{3x^2+6x+11}}=\sqrt{2x+1}\)
d) \(\dfrac{\sqrt{x+4}}{x^2-9}=x+2\)
1) \(\sqrt{2-x^2}+\sqrt{2-\dfrac{1}{x^2}}=4-\left(x+\dfrac{1}{x}\right)\)
2) \(x\sqrt{x}+\sqrt{12-x}=2\sqrt{3\left(x^2+1\right)}\)
3) \(\left(x+8\sqrt{x}+4\right)\left(x-\sqrt{x}+4\right)=36x\)
Giải các phương trình vô tỉ sau:
a) \(\dfrac{9}{x^2}\)+ \(\dfrac{2x}{\sqrt{2x^2+9}}\)= 1
b) x+\(\dfrac{x}{\sqrt{x^2-1}}\)= \(\dfrac{35}{12}\)
Giải và biện luận các phương trình sau theo tham số m :
a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
b) \(\dfrac{\left(m+3\right)x}{2x-1}=3m+2\)
c) \(\dfrac{8mx}{x+3}=\left(4m+1\right)x+1\)
d) \(\dfrac{\left(2-m\right)x}{x-2}=\left(m-1\right)x-1\)
(\(-2^3\)) . ( \(\dfrac{3}{4}\) - 0, 25 ): ( \(2\dfrac{1}{4}\) - \(1\dfrac{1}{6}\) )
( \(3\dfrac{1}{3}\) + 2, 5 ) : ( \(3\dfrac{1}{6}\) - \(4\dfrac{1}{5}\) ) - \(\dfrac{11}{31}\)
\(A=\left(-1,5\right)^22\dfrac{2}{3}-\dfrac{1}{6}+\left(\dfrac{4}{7}-\dfrac{2}{5}\right):1\dfrac{1}{35}\)