Giải:
\(\dfrac{3^7.8^5}{6^6.\left(-2\right)^{12}}\)
\(=\dfrac{3^7.8^5}{6^6.2^{12}}\)
\(=\dfrac{3^7.2^{15}}{3^6.2^6.2^{12}}\)
\(=\dfrac{3^7.2^{15}}{3^6.2^{18}}\)
\(=\dfrac{3}{2^3}\)
\(=\dfrac{3}{8}\)
Vậy ...
\(\dfrac{3^7.8^5}{6^6.\left(-2\right)^{12}}=\dfrac{3^7.2^{15}}{2^6.3^6.2^{12}}=\dfrac{3}{8}\)
\(\dfrac{3^7.8^5}{6^6.\left(-2\right)^{12}}=\dfrac{3^7.\left(2^3\right)^5}{\left(2.3\right)^6.2^{12}}=\dfrac{3^7.2^{15}}{2^6.3^6.2^{12}}=\dfrac{3}{2^3}=\dfrac{3}{8}\)