\(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{4x}\cdot\dfrac{5}{2x+1}=\dfrac{10}{2x+1}\)
\(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{4x}\cdot\dfrac{5}{2x+1}=\dfrac{10}{2x+1}\)
\(x:\dfrac{x-1}{2}-\dfrac{x^3+3x\left(x-1\right)-1}{2x^2 +2x}.\dfrac{-4x}{x^2+1-2x}-\dfrac{4x^2}{x^2-1}\)
a)-4x+1>17
b)4(x-3)\(^2\) - (2x-a)\(^2\) ≥ 12x+3
c)\(\dfrac{4x-5}{3}\) ≤ \(\dfrac{7-x}{5}\)
d)\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}\) < \(\dfrac{3-x}{5}-\dfrac{2x-1}{4}\)
a)\(\dfrac{x}{x-1}-\dfrac{2}{x-1}\)
b)\(\dfrac{4+4x}{3x^2+6x}+\dfrac{x}{3x+6}\)
c)\(\dfrac{x^2-2x}{x-1}\cdot\dfrac{1}{x}:\dfrac{x^2-4}{x^2-2x+1}\)
rút gọn biểu thức sau A=\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
Rút gọn biểu thức sau: \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) Rút gọn biểu thức sau: \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
Cho biểu thức:
\(P=\left(\dfrac{2x-3}{4x^2-12x+5}+\dfrac{2x-8}{13x-2x^2-20}-\dfrac{3}{2x-1}\right):\dfrac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P.
b) Tính giá trị của P khi \(\left|x\right|=\dfrac{1}{2}\).
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P > 0.
Thực hiện phép tính
a, \(\dfrac{7x+2}{5xy^3}\)+ \(\dfrac{x^2y^3}{21x+6}\)
b, \(\dfrac{x}{2x-6}\)+ \(\dfrac{4}{x^2-9}\)
c,\(\dfrac{x^2+2x+1}{\left(x-1\right)^2}\): \(\dfrac{2x^2+4x+2}{4x^2-8x+4}\)
đ, \(\dfrac{2x+1}{x-2}\): \(\dfrac{2x+1}{2-x}\)