\(\dfrac{2}{x-1}+\dfrac{2x+3}{x^2+x+1}=\dfrac{\left(2x+1\right)\left(2x-1\right)}{x^3-1}\)(đkxđ: x \(\ne\) 1)
\(\Leftrightarrow\) \(\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4x^2-1}{x^3-1}\)
\(\Leftrightarrow\) \(\dfrac{2x^2+2x+2}{x^3-1}+\dfrac{2x^2+3x-2x-3}{x^3-1}=\dfrac{4x^2-1}{x^3-1}\)
\(\Leftrightarrow\) 2x2 + 2x + 2 + 2x2 + x - 3 = 4x2 - 1
\(\Leftrightarrow\) 4x2 + 3x - 1 = 4x2 - 1
\(\Leftrightarrow\) 4x2 - 4x2 + 3x = 1 - 1
\(\Leftrightarrow\) 3x = 0
\(\Leftrightarrow\) x = 0(t/m điều kiện)