đk: x≠1
MSC: x3-1=(x-1)(x2+x+1)
Quy đồng bỏ mẫu ta dc:
x2+x+1-3x2=2x(x-1)
4x2-3x-1=0
(x-1)(x+1/4)=0
x=1(loại) hay x=-1/4 (nhận)
đk: x≠1
MSC: x3-1=(x-1)(x2+x+1)
Quy đồng bỏ mẫu ta dc:
x2+x+1-3x2=2x(x-1)
4x2-3x-1=0
(x-1)(x+1/4)=0
x=1(loại) hay x=-1/4 (nhận)
1) \(\dfrac{7x-3}{x-1}\) = \(\dfrac{2}{3}\)
2) \(\dfrac{2\left(3-7x\right)}{1+x}\) = \(\dfrac{1}{2}\)
3) \(\dfrac{x^{2^{ }}-6}{x}\) = x + \(\dfrac{3}{2}\)
4) \(\dfrac{5}{3x+2}\) = 2x - 1
5) \(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}\) = 0
6) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
Giải phương trình:
a) \(\dfrac{2x-5}{x+5}\) = 4
b) \(\dfrac{x^2-4}{x}\) = \(\dfrac{2x+3}{2}\)
c) \(\dfrac{2x+3}{2x-1}\) = \(\dfrac{x-3}{x+5}\)
d) \(\dfrac{3x-2}{x+7}\) = \(\dfrac{6x+1}{2x-3}\)
Giải các phương trình sau :
a) \(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
b) \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c) \(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2+x-3}{1-x}\)
d) \(\dfrac{5-2x}{3}+\dfrac{\left(x-1\right)\left(x+1\right)}{3x-1}=\dfrac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
a) \(\dfrac{4x-8}{2x+1}\)=0 b) 2-\(\dfrac{x}{x-2}\)=\(\dfrac{x+1}{x+2}\) c)\(\dfrac{x+2}{x-3}\)=\(\dfrac{x}{x+1}\) d) \(\dfrac{3}{x-2}\)=\(\dfrac{1}{x}\) e) \(\dfrac{x-2}{x}\)=\(\dfrac{x-3}{x+2}\) f) \(\dfrac{2x}{x+1}\)-\(\dfrac{1}{x-2}\)=\(\dfrac{2x^2-16}{\left(x+1\right)\left(x-2\right)}\) g) \(\dfrac{3x}{x-1}+\dfrac{2}{x+1}=\dfrac{3x^2}{\left(x-1\right)\left(x+1\right)}\) h) \(\dfrac{1-x}{4}=\dfrac{2x+1}{5}\) i)\(\dfrac{2-3x}{3}=\dfrac{x+4}{4}\) m) \(\dfrac{4x+3}{5}=\dfrac{3-4x}{3}\) n) \(\dfrac{7-3x}{4}-2=\dfrac{x+5}{3}\)
\(a,\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)
\(b,\dfrac{2x-1}{x^2+4x-5}+\dfrac{x-2}{x^2-10x+9}=\dfrac{3x-12}{x^2-4x-45}\)
5.c) \(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x-1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
6.b) \(\dfrac{4}{2x^3+3x^2-8x-12}-\dfrac{1}{x^2-4}-\dfrac{4}{2x^2+7x+6}+\dfrac{1}{2x+3}=0\)
1) \(\dfrac{4x+7}{x-1}\) = \(\dfrac{12x+5}{3x+4}\)
2) \(\dfrac{x}{x-1}\) - \(\dfrac{2x}{x^{2^{ }}-1}\) = 0
3) \(\dfrac{1}{3-x}\) - \(\dfrac{14}{x^2-9}\) = 1
4) \(\dfrac{x+1}{x-1}\) - \(\dfrac{x-1}{x+1}\) = \(\dfrac{4}{x^2-1}\)
5) x + \(\dfrac{1}{x}\) = x2 + \(\dfrac{1}{x^2}\)
6) \(\dfrac{x-1}{x^2+4}\) = \(\dfrac{x-1}{x+1}\)
\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
\(a.\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
\(b.\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)