Tìm đã rồi đăng
Bài 20 Sách bài tập - trang 29 - Toán lớp 8 | Học trực tuyến
Tìm đã rồi đăng
Bài 20 Sách bài tập - trang 29 - Toán lớp 8 | Học trực tuyến
Chứng minh đẳng thức:
a) \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)=0}\)
b) \(\dfrac{x^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)=1}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{1}{xyz}\)
Cộng các phân thức :
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{4}{\left(y-x\right)\left(z-x\right)}+\dfrac{3}{\left(y-x\right)\left(y-z\right)}+\dfrac{3}{\left(y-z\right)\left(x-z\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
Tính:
a) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
b) \(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-x\right)\left(y-z\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
d) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)
Giúp mình với!!! Mình cần gấp!!! 10 giờ sáng mai cần gấp nha !!!
Tính:
a) \(\dfrac{x}{\left(x-y\right)\left(x-z\right)}+\dfrac{y}{\left(y-x\right)\left(y-z\right)}+\dfrac{z}{\left(z-x\right)\left(z-y\right)}\)
b) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Tính
1. \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-1\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
2. \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x}\)
Tính:
\(D=\dfrac{4x^2-1}{\left(x-y\right)\cdot\left(x+y\right)}+\dfrac{4y^2-1}{\left(y-z\right)\cdot\left(y-x\right)}+\dfrac{4z^2-1}{\left(z-x\right)\cdot\left(z-y\right)}\)
Cmr: nếu x+y+z=0 thì \(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Chứng minh đẳng thức:\(\dfrac{x^2y^2z^2}{a^2b^2}+\dfrac{(x^2-a^2)\left(y^2-a^2\right)\left(z^2-a^2\right)}{a^2\left(a^2-b^2\right)}+\dfrac{(x^2-b^2)\left(y^2-b^2\right)\left(z^2-b^2\right)}{b^2\left(b^2-a^2\right)}=x^2+y^2+z^2-a^2-b^2\)
Gợi ý trong sách: Khai triển hạng tử thứ 2 và thứ 3 ở vế trái (Có nhiu đó thui)
Help me!!!!!!!!!
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)