Đặt A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
=>2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
=>2A-A=(\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\))-(\(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\))
=>A=1-\(\dfrac{1}{^{ }2^{10}}=\dfrac{2^{10}-1}{2^{10}}=\dfrac{1023}{1024}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=1-\dfrac{1}{2^{10}}\)
\(A=\dfrac{2^{10}-1}{2^{10}}=\dfrac{1023}{1024}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\).