ĐKXĐ : \(x\ne-2\)
PT \(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)
\(\Leftrightarrow12=x^3+8+x^2-2x+4\)
\(\Leftrightarrow x^3+8+x^2-2x+4-12=0\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=1\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy ...
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
⇔ \(\dfrac{12}{\left(2+x\right)\left(4-2x+x^2\right)}=\dfrac{8+x^3}{\left(2+x\right)\left(4-2x+x^2\right)}+\dfrac{4-2x+x^2}{\left(2+x\right)\left(4-2x+x^2\right)}\)
⇔ 12 = 8 + \(x^3\) + 4 - 2x + \(x^2\)
⇔ 12 - 8 - \(x^3\) - 4 + 2x - \(x^2\)= 0
⇔ -\(x^3\) + 2x - \(x^2\) = 0
⇔ -x(\(x^2-2+x\) ) = 0
⇔ -x(\(x^2+2x-x-2\) ) = 0
⇔ -x[x(x+2)-(x+2)] = 0
⇔ -x(x-1)(x+2) = 0
⇔ -x = 0 hoặc x-1 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = 1 hoặc x = -2
Vậy phương trình có tập nghiệm S = {0;1;-2}