\(\Delta ABC;\widehat{BAC}=90^o\); \(\widehat{ABI}=\widehat{IBC};ID\perp BC\left(D\in BC\right)\); DI cắt BA tại E. Chứng minh:
a) \(\Delta ABI=\Delta DBI\)
b) \(\Delta ABD\) cân và BI là đường trung trực của AD.
c) ID < IE và IE = IC
d) \(\Delta ABC\) cần thêm điều kiện gì thì I cách đều ba đỉnh \(\Delta BEC\)
a/ Xét 2 tam giác vuông ΔABI và ΔDBI có:
Cạnh huyền BI chung
\(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)
=> ΔABI = ΔDBI (c.h - g.n)
b/ Có: ΔABI = ΔDBI (cmt)
=> AB = BD (2 cạnh tương ứng)
=> ΔABD cân tại B
Ta có: \(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)
=> BI là phân giác của \(\widehat{ABC}\)
Hay: BI là phân giác của \(\widehat{ABD}\)
Lại có: ΔABD cân tại B (cmt)
=> BI là đường trung trực của ΔABD
Hay: BI là đường trung trực của AD
c/ Ta có: ΔABI = ΔDBI (cmt)
=> AI = ID (2 cạnh tương ứng)
Xét ΔAIE và ΔDIC ta có:
\(\widehat{IAE}=\widehat{IDC}\left(=90^0\right)\)
AI = ID (cmt)
\(\widehat{AIE}=\widehat{DIC}\) (đối đỉnh)
=> ΔAIE = ΔDIC (g - c - g)
=> IE = IC (2 cạnh tương ứng)
ΔIDC vuông tại D
=> ID < IC (cạnh huyền > cạnh góc vuông)
Mà: IE = IC (cmt)
=> ID < IC