Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh Anh

Đề thi học kì 1

Bài 1 :

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(x-1).x = 49/50

Bài 3 :

Cho chu vi 3 cạnh hình tam giác là 72. Ba cạnh tỉ lệ đều với 3,4,5. Tính độ dài 3 cạnh của tam giác?

Bài 4 :

Bốn lớp 7A, 7B, 7C, 7D lao động tỉ lệ đều với 3,4,5,6. Lớp 7A kém hơn lớp 7B là 5 cây. Tính số cây mỗi lớp ?

Bài 5 : Cho tam giác MNP có MN<NP. Trên cạnh NP lấy điểm D sao cho ND=NM, tai phân giác của góc MNP cắt MP tại E, H là giao điểm của NE và MD

a) Chứng minh : tam giác MNH = tam giác DNH

b) Chứng minh : HM=HD và NE là trung trực của MD

Vẽ hình giúp mình nhé !!

GIÚP MÌNH VỚI CÁC BẠN ƠI hihi

Lightning Farron
10 tháng 12 2016 lúc 20:24

Bài 1:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right)x}=\frac{49}{50}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{49}{50}\)

\(\Leftrightarrow1-\frac{1}{x}=\frac{49}{50}\Leftrightarrow\frac{1}{x}=\frac{1}{50}\Leftrightarrow x=50\)

Bài 3:

Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (a,b,c>0)

Theo đề bài ta có:

\(a+b+c=72\)

\(a:b:c=3:4:5\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{72}{12}=6\)

\(\Rightarrow\begin{cases}\frac{a}{3}=6\Rightarrow a=6\cdot3=18\\\frac{b}{4}=6\Rightarrow b=6\cdot4=24\\\frac{c}{5}=6\Rightarrow c=6\cdot5=30\end{cases}\) (thỏa mãn)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 18;24;30

Bài 4:

Gọi số cây 4 lớp 7A, 7B, 7C, 7D lao động được lần lượt là a,b,c,d (a,b,c,d>0;b>a)

Theo đề bài ta có:

\(b-a=5\)

\(a:b:c:d=3:4:5:6\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{b-a}{4-3}=\frac{5}{1}=5\)

\(\Rightarrow\begin{cases}\frac{a}{3}=5\Rightarrow a=5\cdot3=15\\\frac{b}{4}=5\Rightarrow b=5\cdot4=20\\\frac{c}{5}=5\Rightarrow c=5\cdot5=25\\\frac{d}{6}=5\Rightarrow d=5\cdot6=30\end{cases}\) (thỏa mãn)

Vậy số cây 4 lớp 7A, 7B, 7C, 7D lao động được lần lượt là 15 cây; 20 cây; 25 cây; 30 cây

 

 

Nguyễn Huy Tú
10 tháng 12 2016 lúc 21:08

Bài 5:

M N P D H 1 2 1 2 Giải:

a) Xét \(\Delta MNH,\Delta DNH\) có:

\(MN=ND\left(gt\right)\)

\(\widehat{N_1}=\widehat{N_2}\left(=\frac{1}{2}\widehat{N}\right)\)

NH: cạnh chung

\(\Rightarrow\Delta MNH=\Delta DNH\left(c-g-c\right)\) ( đpcm )

b) Vì \(\Delta MNH=\Delta DNH\)

\(\Rightarrow HM=HD\) ( cạnh t/ứng )

\(\Rightarrow\)M là trung điểm của MD (1)

\(\Rightarrow\widehat{H_1}=\widehat{H_2}\) ( góc t/ứng )

\(\widehat{H_1}+\widehat{H_2}=180^o\) ( kề bù )

\(\Rightarrow\widehat{H_1}=\widehat{H_2}=90^o\)

\(\Rightarrow NE\perp MD\) (2)

Từ (1) và (2) suy ra NE là trung trực của MD ( đpcm )

Vậy...

 

Aki Tsuki
10 tháng 12 2016 lúc 21:22

Bài 5: Ta có hình vẽ sau:

N M D P E H

a) Xét ΔMNH và ΔDNH có:

NH: Cạnh chung

\(\widehat{MNH}=\widehat{DNH}\) (gt)

NM = ND (gt)

=> ΔMNH = ΔDNH (c.g.c)(đpcm)

b) +) Vì ΔMNH = ΔDNH (ý a)

=> HM = HD (2 cạnh tương ứng)(đpcm)

+) Vì ΔMNH = ΔDNH (ý a)

=> MH = DH (2 cạnh tương ứng) (1)

\(\widehat{NHM}=\widehat{NHD}\) (2 góc tương ứng)

\(\widehat{NHM}+\widehat{NHD}=180^o\) ( kề bù)

=> \(\widehat{NHM}=\widehat{NHD}=\frac{180^0}{2}=90^0\) (2)

Từ (1) và (2) => NE là trung trực của MD (đpcm)

Trần Minh Anh
10 tháng 12 2016 lúc 20:51

Bài 1 :

\(^{\frac{1}{1.2}}\)+\(\frac{1}{2.3}\)+....+\(\frac{1}{\left(x-1\right)x}\)=\(\frac{49}{50}\)

1-1/2+1/2-1/3+....+1/(x1)-1/x =49/50

1+(1/21/2) +(1/3-1/3) +....-1/ x =49/50

1-1/x=49/50

(x-1)/x =49/50

x=50

Bài 2

gọi 3 cạnh của hình tam giác là a, b,c ( a,b,c >0)

ta có a/3=b/4=c/5 và a+b+c=72

a/3=b/4=c/5=(a+b+c)/(3+4+5)=72/12=6

a/3=6 nên a=1

b/4=6 nên b=24

c/5=6 nên c=30

vây (a, b,c )=(18,24,30)

bài 4:

gọi số cây 4 lớp trồng đc lần lượt là a,b,c,d (a,b,c,d > 0)

ta có : a/3=b/4=c/5=c/6 =( b-a)/(4-3)=5/1=5

a/3=5 nên a=15

b/4 =5 nên b=20

c/5=5 nên c=25

d/6=5 nên d=30

vậy số cây của 4 lớp lần lượt là 15,20,25,30 cây

bài 5:

 

Trần Minh Anh
10 tháng 12 2016 lúc 21:06

bài 5

Trần Minh Anh
10 tháng 12 2016 lúc 21:15

a, xét Δ NHM và Δ NHD có :

NM =ND (gt)

GÓC N\(_1\)=GÓC N\(_2\)(GT)

NH là cạnh chung

\(\Rightarrow\)ΔMHN=ΔDHN ( c.g.c) (ĐPCM)

b, \(\Rightarrow\)MH =HD (2cạnh tương ứng )

mà điểm H nằm trên đoạn thẳng NE nên NE là đường trung trực của MD (đpcm)

tick mk nhé !! ^^

\(\Rightarrow\)

Nguyễn Quỳnh Anh
10 tháng 12 2016 lúc 20:45

Nguyễn Huy Tú giúp mình

Nguyễn Quỳnh Anh
10 tháng 12 2016 lúc 20:57

@tulatu2004

 


Các câu hỏi tương tự
Đặng Thị Hông Nhung
Xem chi tiết
Ngân Phùng
Xem chi tiết
Rau
Xem chi tiết
Ngô Thị Thu Trang
Xem chi tiết
BanhTrang Kibo
Xem chi tiết
Lê Quang Tuấn
Xem chi tiết
Tam Nguyen Thanh
Xem chi tiết
Châu Trần Giang
Xem chi tiết
Nguyễn Thị Ngọc Bảo
Xem chi tiết