Xét : \(\left\{\begin{matrix}\left(x-8\right)^{2016}\ge0\\\sqrt{y-10}\ge0\end{matrix}\right.\)
=> Để \(\left(x-8\right)^{2016}+\sqrt{y-10}=0\)
Thì ( x- 8)2016= \(\sqrt{y-10}\)= 0
\(\Rightarrow\left\{\begin{matrix}\left(x-8\right)^{2016}=0\\\sqrt{y-10}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=10\end{matrix}\right.\)
=> x+ y= 8+ 10= 18
Vậy x+ y= 18
Ta có 2 trường hợp:
Th1: (x-8)2016 và \(\sqrt{y-10}\) là 2 số trài dấu.
Nhưng \(\left(x-8\right)^{2016}\ge0\) \(\forall x\)
\(\sqrt{y-10}\ge0\) \(\forall y\)
\(\Rightarrow\)(x-8)2016 và \(\sqrt{y-10}\) ko thể trái dấu
Th2: \(\left(x-8\right)^{2016}=\sqrt{y-10}=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-8\right)=0\\y-10=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=10\end{matrix}\right.\)
Vậy x+y=8+10=18