Đề 14 bài 5. Cho tam giác BCD nhọn có BC = BD, K là trung điểm của CD. Từ K kẻ KE vuông góc với BC tại E, KF vuông góc với BD tại F.
a. Chứng minh: tam giác BCK = tam giác BDK.
b. Chứng minh: tam giác BKE = tam giác BKF.
c. Gọi M là giao điểm của đường thẳng BC và đường thẳng KF, N là giao điểm của đường thẳng BD và đường thẳng KE. Chứng minh: ME = NF, MF = NE.
d. Chứng minh: EF // MN.
a: Xét ΔBCK và ΔBDK có
BC=BD
CK=DK
BK chung
Do đó: ΔBCK=ΔBDK
b: Ta có; ΔBCK=ΔBDK
=>\(\widehat{CBK}=\widehat{DBK}\)
Xét ΔBEK vuông tại E và ΔBFK vuông tại F có
BK chung
\(\widehat{EBK}=\widehat{FBK}\)
Do đó: ΔBEK=ΔBFK
c: Ta có: ΔBEK=ΔBFK
=>EK=FK
Xét ΔKEM vuông tại E và ΔKFN vuông tại F có
KE=KF
\(\widehat{EKM}=\widehat{FKN}\)(hai góc đối đỉnh)
Do đó: ΔKEM=ΔKFN
=>ME=FN và KM=KN
Ta có: EK+KN=EN
KF+KM=FM
mà EK=KF
và KN=KM
nên EN=FM
d:
Ta có: ΔBEK=ΔBFK
=>BE=BF
Xét ΔBMN có \(\dfrac{BE}{EM}=\dfrac{BF}{FN}\)
nên EF//MN