Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Thị Thái An
8 tháng 6 2022 lúc 16:17

\(\cos\left(2x\right)-\sin\left(3x\right)+\cos\left(5x\right)=\sin\left(10x\right)+\cos\left(8x\right)\)

\(\Leftrightarrow\cos\left(2x\right)-\cos\left(8x\right)+\cos\left(5x\right)-\sin\left(3x\right)-\sin\left(10x\right)=0\)

\(\Leftrightarrow-\left(\cos\left(8x\right)-\cos\left(2x\right)\right)+\cos\left(5x\right)-\left(\sin(10x\right)+\sin\left(3x\right))=0\)

\(\Leftrightarrow2\sin\left(5x\right)\sin\left(3x\right)+\cos\left(5x\right)-\sin\left(3x\right)-2\sin\left(5x\right)\cos\left(5x\right)=0\)

\(\Leftrightarrow2\sin\left(5x\right)(\sin\left(3x\right)-cos\left(5x\right))-\left(sin\left(3x\right)-cos\left(5x\right)\right)=0\)

\(\Leftrightarrow\left(2sin\left(5x\right)-1\right)\left(sin\left(3x\right)-cos\left(5x\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(5x\right)=\dfrac{1}{2}\\sin\left(3x\right)=cos\left(5x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin\left(5x\right)=\dfrac{1}{2}\\sin\left(3x\right)=sin\left(\dfrac{\pi}{2}-5x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\\\left[{}\begin{matrix}3x=\dfrac{\pi}{2}-5x+k2\pi\\3x=\pi-\dfrac{\pi}{2}+5x+k2\pi\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{16}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

 


Các câu hỏi tương tự
Nguyên Nguyên
Xem chi tiết
Đào Trà
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Dương Nguyễn
Xem chi tiết
minh hy
Xem chi tiết
Julian Edward
Xem chi tiết
QSDFGHJK
Xem chi tiết
Julian Edward
Xem chi tiết
Hoài Tạ Thị Thu
Xem chi tiết