cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)
Cho (E): x^2/4 + y^2/1 = 1 và điểm C (2; 0). Tìm tọa độ các điểm A và B thuộc (E) sao cho tam giác ABC là tam giác đều
Bài 9: Tìm phương trình chính tắc của elip nếu nó đi qua điểm A(6; 0) và tỉ số của tiêu cự với độ dài trục lớn bằng .
Giải giúp mình với cái này khó hiểu lắm
cho (E) : \(\frac{x^2}{6}\) + \(\frac{y^2}{2}\) = 1
a) tìm M thuộc (E) sao cho góc F1MF2 = 90o
b) tìm M thuộc (E) sao cho góc F1MF2 = 60o .
cho (E) : \(\frac{x^2}{6}\) + \(\frac{y^2}{2}\) = 1
a) tìm M thuộc (E) sao cho góc F1MF2 = 90o
b) tìm M thuộc (E) sao cho góc F1MF2 = 60o .
Cho (E): x2 + 2y2 = 8
Và (d): x-√2y + 2=0
(E) giao (d) tại hai điểm phân biệt B và C. Tìm điểm A thuộc (E) sao cho diện tích tam giác ABC lớn nhất?
Viết phương trình chính tắc của elip (E) có hai tiêu điểm là \(F_1\) và \(F_2\) biết :
a) (E) đi qua hai điểm \(M\left(4;\dfrac{9}{5}\right)\) và \(N\left(3;\dfrac{12}{5}\right)\)
b) (E) đi qua \(M\left(\dfrac{3}{\sqrt{5}};\dfrac{4}{\sqrt{5}}\right)\) và tam giác \(MF_1F_2\) vuông tại M
Cho (E) : \(9x^2+25y^2=225\)
a) Tìm tọa độ hai tiêu điểm \(F_1;F_2\) và các đỉnh của (E)
b) Tìm điểm \(M\in\left(E\right)\) sao cho M nhìn \(F_1F_2\) dưới một góc vuông
(e) đi qua điểm M (2;(5)/(2)) và có một tiêu điểm (-2;8)