Bài 1: Số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhân Hoàng Ngọc

Có bao nhiêu số z thỏa mãn |z+2 -i| = 2\(\sqrt{2}\) và (z-1)2 là số thuần ảo

Akai Haruma
24 tháng 3 2018 lúc 1:47

Lời giải:

Đặt \(z=a+bi\) với $a,b$ là các số thực.

Ta có: \(|z+2-i|=|(a+2)+i(b-1)|=2\sqrt{2}\)

\(\Leftrightarrow (a+2)^2+(b-1)^2=8(*)\)

Và:

\((z-1)^2=z^2+1-2z=(a+bi)^2+1-2(a+bi)\)

\(=a^2-b^2+2abi+1-2(a+bi)\)

\(=(a^2-b^2+1-2a)+i(2ab-2b)\)

Để \((z-1)^2\) thuần ảo thì \(a^2-b^2+1-2a=0\)

\(\Leftrightarrow (a-1)^2=b^2\)

\(\Leftrightarrow \left[\begin{matrix} a-1=b\\ a-1=-b\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} a=b+1\\ a=1-b\end{matrix}\right.\)

Nếu \(a=b+1\), thay vào (*):

\((b+3)^2+(b-1)^2=8\Leftrightarrow b^2+2b+1=0\Leftrightarrow b=-1\)

\(\Rightarrow a=0\Rightarrow z=-1\)

Nếu \(a=1-b\Rightarrow (3-b)^2+(b-1)^2=8\)

\(\Leftrightarrow b^2-4b+1=0\Rightarrow b=2\pm \sqrt{3}\)

\(\Rightarrow a=-1\mp \sqrt{3}\), tương ứng với 2 số $z$

Vậy có $3$ số thỏa mãn.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Đắc Phúc An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thị Quỳnh
Xem chi tiết
Trí Nguyễn
Xem chi tiết
Đặng Đức Trung
Xem chi tiết
NPC
Xem chi tiết
Kiên Đỗ
Xem chi tiết