1. cô lập m: m>= -\(e^{\frac{\pi}{2}}\)+\(\sqrt[4]{e^{2x+1}}\)
2 bất phương trình có nghiệm vs mọi x=> m> max của vế phải
3 tìm max vế phải
1. cô lập m: m>= -\(e^{\frac{\pi}{2}}\)+\(\sqrt[4]{e^{2x+1}}\)
2 bất phương trình có nghiệm vs mọi x=> m> max của vế phải
3 tìm max vế phải
Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:
a) \(I=2ln\left(x\right)\)
b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)
c) \(I=ln\left(x^{lnx}e\right)\)
d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)
Câu 2: Hàm số nào sau đây không có cự trị:
a) \(y=\frac{2+x^2}{x^2-4}\)
b) \(y=x^8+x^6+2x^4-4x^2-x+1\)
c) \(y=sin\left(cos\left(x\right)\right)\)
d) \(y=x^3+2x^2+\sqrt{x}\)
Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)
b)\(\left[-2;4\right]\)
c) \(\left(4;+\infty\right)\)
d) Không tồn tại giá trị m
Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\) và \(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:
a) \(a-b+c+d=0\)
b) \(c=\frac{1}{d}\)
c) \(\left(a-b\right)\left(c+d\right)=0\)
d) \(a+b=35c^2+35d\)
Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0
b) 1
c) 2
d) Đáp án khác
Tìm tất cả các giá trị tham số m dể phương trình
\(\frac{1}{3}\)\(\left|cos^3x\right|\)-3cos2x+5\(\left|Cosx\right|\)-3+2m=0
có đúng 4 nghiệm phân biệt thuộc đoạn\(\left[0;2\pi\right]\)
Câu 1: Cho hàm số \(f\left(x\right)=3x^2-2x+m\) . Gọi \(F\left(x\right)\) là một nguyên hàm của \(f\left(f’\left(x\right)\right)\). Tìm m nguyên thuộc \(\left[-2020;2020\right]\) để hàm số \(\frac{F\left(f\left(x\right)\right)}{f\left(x\right)}=1\) vô nghiệm.
a) 0
b) 1
c) 1020
d) Khác
Câu 2. Cho phương trình \(log_{mln\left(mx\right)}\left(m^2+m\right)\). Tìm tấc cả giá trị m nguyên để phương trên luôn có nghiệm.
Câu 3: Cho \(\lim\limits_{x\rightarrow a}\frac{\sqrt{x^2-4}+x}{\sqrt[3]{x-a+2}}=\sqrt[b]{432}+2\sqrt[3]{a}\) . Khi này tìm số hạng chứ \(x^4\) trong khai triển\(x^2\left(ax+2b\right)^{10}+x\left(bx^a+b-a\right)^{5\left(b-a\right)}\) là:
a) 215040
b) 251400
c) 245100
d) Đáp án khác.
1.Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số y = -\(\left|x^3-3x+m\right|\) trên đoạn [0,2] bằng -3 .Tổng tất cả các phần tử của S là:
A.1 B.2 C.0 D.6
2.Hỏi có bao nhiêu số nguyên dương m để hàm số y = \(-\left(m^2-1\right)^3-\left(m-1\right)x^2+x-7\) đồng biến trên khoảng \(\left(-\infty,+\infty\right)\)
A.1 B.2 C.0 D.3
3.Biết I = \(\int\limits^2_1\dfrac{dx}{\left(2x+2\right)\sqrt{x}+2x\sqrt{x+1}}\)=\(\dfrac{\sqrt{a}-\sqrt{b}-c}{2}\) với a,b,c là các số nguyên dương . Tính P = a-b+c
4.Cho số phức z thỏa mãn : \(\left|z-3+4i\right|=2\) , w =2z+1-i .Khi đó \(\left|w\right|\) có giá trị lớn nhất là?
Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa:
a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\)
Bài 2: rút gọn các biểu thức:
a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\)
b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)
Bài 3: xác định hàm số bậc nhất y=ax+b
a) Biết đồ thị của hàm số song song với đường tahwngr y=2x và đi qua điểm A(1;4)
b) Vẽ đồ thị hàm số ứng với a, b vừa tìm được
Bài 4: Cho tam giác ABC vuông tại A. Biết BC=10cm, góc C=30độ. Gải tam giác vuông ABC
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. biết AB=3, AC=4. (phải vẽ hình)
a) Tính AH, BH?
b) chứng minh CB là tiếp tuyến của đường tròn (A, AH)
c) kẻ tiếp tuyến BI và CK với đường tròn (A,AH) (I,K là điểm). Chứng minh: BC=BI+CK và ba điểm I, A, K thẳng hàng
Bài tập 2: a, Tìm giá trị lớn nhất, giá trị nhỏ nhất f = \(3-\dfrac{10}{x+3}\) / [-2 : 5]
b, Tính I = \(\int\limits^{\pi}_0\left(2x-3\right)cosxdx\)
Câu 22: Một hình trụ có bán kính đáy r = 5cm, chiều cao h = 7cm. Diện tích xung quanh của hình trụ này là bao nhiêu:
A. 35 \(\pi cm^2\) B. 70 \(\pi cm^2\)
C. \(\dfrac{70}{3}\pi cm^2\) D. \(\dfrac{35}{3}\pi cm^2\)
các bạn giải giúp mình mấy câu bất đẳng thức này với
1) tìm GTLN
a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
b)y=\(\dfrac{x}{x^2+2}\) x>0
2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)
3)cho x,y>0 thỏa mãn x+y=2 . CM
a)xy(x2+y2)\(\le2\)
b)x3y3(x3+y3)\(\le2\)
4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)
tìm GTLN A= (3-x)(4-y)(2x+3y)
5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1
tìm GTLN của P=x2y2z2u
6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)
8)cho 3 số dương a,b,c có tổng bằng 3 .
tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi
Cho tham số f(x)=\(\left[{}\begin{matrix}\frac{\sqrt{x^2+4}-2}{x^2}khix\ne0\\2a-\frac{5}{4}khix=0\end{matrix}\right.\)
Tìm giá trụ thực của tham số a để hàm số f(x) liên tục tai x=0