Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}-\sqrt{6-2x}\)
có tập xác định là 1 đoạn trên trục số là
Cho hàm số y=\(\dfrac{2x+m}{\sqrt{x-2m-1}-3}\)
Tìm m để hàm số xác định trên khoảng (0;+vô cùng). trình bày cách làm rõ nhá
100% group làm sai
Cho hàm số y = x^2 + 3x có đồ thị (P). Gọi S là tập hợp các giá trị của tham số m để đường thẳng d : y = x + m^2 cắt đồ thị (P) tại hai điểm phân biệt A,B sao cho trung điểm I của đoạn AB nằm trên đường thẳng d': y= 2x+3. Tổng bình phương các phần tử của S là
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m+1}+\dfrac{2x}{\sqrt{-x+2m}}\) xác định trên khoảng (-1;3).
Cho bât phương trình \(2\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+2m-9\). Tìm các giá trị của tham số m để bất phương trình nghiệm đứng với \(\forall\) x thuộc [-1;3]
tập tất cả các giá trị của tham số m để pt \(x^2+\sqrt{1-x^2}=m\) có nghiệm là [a,b]
tính S= a+b
$\text{ Cho hai tập hợp M = [ 2m-1;2m+5] và N = [ m+1;m+7] }$
$\text{ ( Với m là tham số thực )}$
$\text{ Hỏi : Tổng }$ tất cả các giá trị của $m$ để hợp của 2 tập hợp $M$ và $N$ là $1$ đoạn có độ dài bằng $10$ là ?
Có bao nhiêu giá trị nguyên dươg của tham số m để hàm số
\(y=\sqrt{x+m}-\frac{1}{2x-m+1}\)
xác định trên \(\left(1;2\right)\cup\left[4;+\infty\right]\)
Tìm tất cả các giá trị của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2-1}}\) xác định trên (0;1)