Giải:
Gọi I là giao điểm của hai đường chéo BD và AC.
Theo hình vẽ, ta có:
\(\widehat{BDC}=\widehat{ACD}\)
\(\Rightarrow\Delta DIC\) cân tại I
\(\Rightarrow IC=ID\) (1)
Lại có: \(\widehat{BDC}=\widehat{DBA}\) (Hai góc so le trong của AB//CD)
Và \(\widehat{ACD}=\widehat{CAB}\) (Hai góc so le trong của AB//CD)
Mà \(\widehat{BDC}=\widehat{ACD}\) (Hình vẽ)
\(\Rightarrow\widehat{DBA}=\widehat{CAB}\)
\(\Leftrightarrow\Delta IAB\) cân tại I
\(\Rightarrow IA=IB\) (2)
Lấy (1) cộng (2), ta được:
\(ID+IB=IC+IA\)
Hay \(BD=AC\)
\(\Rightarrow\) ABCD là hình thang cân ( Vì có hai đường chéo bằng nhau)
Chúc bạn học tốt!