Cho \(\left\{{}\begin{matrix}a\ne0\\b^2-4ac< 2b-1\end{matrix}\right.\). Chứng minh hệ sau vô nghiệm:
\(\left\{{}\begin{matrix}ax^2+bx+c=y\\ay^2+by+c=z\\az^2+bz+c=x\end{matrix}\right.\)
ycbt\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta^{phay}\le0\end{matrix}\right.hay\left\{{}\begin{matrix}-1< 0\\a^2-\left[\left(-1\right)\left(-a+2a-6\right)\right]\le0\end{matrix}\right.\)
\(\Leftrightarrow a^2+a-6\le0\Leftrightarrow-3\le a\le2\)\(\Rightarrow a\in\left[-3;2\right]\)
\(\left\{{}\begin{matrix}ax^2+bx+c>0\\bx^2+cx+a>0\\cx^2+ax+b>0\end{matrix}\right.\)
Tìm m để hệ bất phương trình có nghiệm
a) \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3\left(x-6\right)< -3\\\dfrac{5x+m}{2}>7\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-1\le0\\x-m>0\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-2\ge0\\\left(m^2+1\right)x< 4\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}m\left(mx-1\right)< 2\\m\left(mx-2\right)\ge2m+1\end{matrix}\right.\)
Giai các hệ bất phương trình sau :
a/ \(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x^2+4x+3\ge0\\2x^2-x-10\le\\2x^2-5x+3>0\end{matrix}\right.0}\)
e/ \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
f/ \(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
Tìm m để hệ bpt có nghiệm \(\left\{{}\begin{matrix}x^2-3x+2< 0\left(S1\right)\\x+2m-5>0\left(S2\right)\end{matrix}\right.\)
( S1=(1;2) )
1, Giải bất pt sau:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\)
2, Xác định m để hệ bất pt sau có nghiệm:
a, \(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b, \(\left\{\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)