Lời giải:
Giả sử $\sqrt{2}+\sqrt{3}=a$ là một số hữu tỉ.
\(\Rightarrow (\sqrt{2}+\sqrt{3})^2=a^2\)
\(\Leftrightarrow 5+2\sqrt{6}=a^2\Rightarrow \sqrt{6}=\frac{a^2-5}{2}\) là số hữu tỉ.
Đặt \(\sqrt{6}=\frac{a^2-5}{2}=\frac{m}{n}(m,n\in\mathbb{Z}^+; (m,n)=1)\)
\(\Rightarrow 6=\frac{m^2}{n^2}\Rightarrow m^2=6n^2\vdots 3\)
\(\Rightarrow m\vdots 3\Rightarrow 6n^2=m^2\vdots 9\Rightarrow n^2\vdots 3\Rightarrow n\vdots 3\). Vậy $m,n$ cùng có ước chung là $3$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Nghĩa là $\sqrt{2}+\sqrt{3}$ không phải số hữu tỉ.
---------------------------------
Giả sử $\sqrt{2}+\sqrt{3}+\sqrt{5}=b$ là số hữu tỉ
\(\Leftrightarrow \sqrt{2}+\sqrt{3}=b-\sqrt{5}\)
\(\Rightarrow 5+2\sqrt{6}=b^2+5-2b\sqrt{5}\) (bình phương 2 vế)
\(\Leftrightarrow 2\sqrt{6}=b^2-2b\sqrt{5}\)
\(\Rightarrow 24=b^4+20b^2-4b^3\sqrt{5}\)
\(\Leftrightarrow \sqrt{5}=\frac{b^4+20b^2-24}{4b^3}\) là số hữu tỉ.
Đặt \(\sqrt{5}=\frac{m}{n}(m,n\in\mathbb{Z}^+, (m,n)=1)\)
\(\Rightarrow 5=\frac{m^2}{n^2}\Rightarrow m^2=5n^2\)
\(\Rightarrow m^2\vdots 5\Rightarrow m\vdots 5\Rightarrow 5n^2=m^2\vdots 25\Rightarrow n^2\vdots 5\Rightarrow n\vdots 5\)
Như vậy $m,n$ có ước chung là $5$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Tức là $\sqrt{2}+\sqrt{3}+\sqrt{5}$ không là số hữu tỉ.