Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
socola

CMR:\(\sqrt{2}+\sqrt{3};\sqrt{2}+\sqrt{3}+\sqrt{5}\) không là các số hữu tỉ

Akai Haruma
17 tháng 6 2019 lúc 13:38

Lời giải:

Giả sử $\sqrt{2}+\sqrt{3}=a$ là một số hữu tỉ.

\(\Rightarrow (\sqrt{2}+\sqrt{3})^2=a^2\)

\(\Leftrightarrow 5+2\sqrt{6}=a^2\Rightarrow \sqrt{6}=\frac{a^2-5}{2}\) là số hữu tỉ.

Đặt \(\sqrt{6}=\frac{a^2-5}{2}=\frac{m}{n}(m,n\in\mathbb{Z}^+; (m,n)=1)\)

\(\Rightarrow 6=\frac{m^2}{n^2}\Rightarrow m^2=6n^2\vdots 3\)

\(\Rightarrow m\vdots 3\Rightarrow 6n^2=m^2\vdots 9\Rightarrow n^2\vdots 3\Rightarrow n\vdots 3\). Vậy $m,n$ cùng có ước chung là $3$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Nghĩa là $\sqrt{2}+\sqrt{3}$ không phải số hữu tỉ.

---------------------------------

Giả sử $\sqrt{2}+\sqrt{3}+\sqrt{5}=b$ là số hữu tỉ

\(\Leftrightarrow \sqrt{2}+\sqrt{3}=b-\sqrt{5}\)

\(\Rightarrow 5+2\sqrt{6}=b^2+5-2b\sqrt{5}\) (bình phương 2 vế)

\(\Leftrightarrow 2\sqrt{6}=b^2-2b\sqrt{5}\)

\(\Rightarrow 24=b^4+20b^2-4b^3\sqrt{5}\)

\(\Leftrightarrow \sqrt{5}=\frac{b^4+20b^2-24}{4b^3}\) là số hữu tỉ.

Đặt \(\sqrt{5}=\frac{m}{n}(m,n\in\mathbb{Z}^+, (m,n)=1)\)

\(\Rightarrow 5=\frac{m^2}{n^2}\Rightarrow m^2=5n^2\)

\(\Rightarrow m^2\vdots 5\Rightarrow m\vdots 5\Rightarrow 5n^2=m^2\vdots 25\Rightarrow n^2\vdots 5\Rightarrow n\vdots 5\)

Như vậy $m,n$ có ước chung là $5$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Tức là $\sqrt{2}+\sqrt{3}+\sqrt{5}$ không là số hữu tỉ.


Các câu hỏi tương tự
Huyền Anh
Xem chi tiết
Nguyễn cẩm Tú
Xem chi tiết
tử thần
Xem chi tiết
bbiooo
Xem chi tiết
ngọc linh
Xem chi tiết
Nguyễn Kim Chi
Xem chi tiết
Mặc tử han
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Mai Anh Phạm
Xem chi tiết