Lời giải:
Vì các số đã cho đều là số lớn hơn $3$ nên đều là số nguyên tố lẻ.
Do đó \(a+(a+k)=\text{lẻ}+\text{lẻ}=\text{chẵn}\)
\(\Leftrightarrow 2a+k\) chẵn kéo theo $k$ chẵn hay $k$ chia hết cho $2$ (1)
Mặt khác: Vì $a,a+k,a+2k$ đều lớn hơn $3$ nên không có số nào chia hết cho $3$. Do đó $a,a+k,a+2k$ chia $3$ chỉ có thể có 2 số dư $1,2$
Mà có $3$ số nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{3}{2}\right]+1=2\) số có cùng số dư khi chia cho $3$
Giả sử \(a,a+k\Rightarrow (a+k)-a\vdots 3\Leftrightarrow k\vdots 3\)
Giả sử \(a,a+2k\Rightarrow (a+2k)-a\vdots 3\Leftrightarrow 2k\vdots 3\Leftrightarrow k\vdots 3\)
Giả sử \(a+k, a+2k\Rightarrow (a+2k)-(a+k)\vdots 3\Leftrightarrow k\vdots 3\)
Tóm lại trong mọi TH thì $k$ chia hết cho $3$ (2)
Từ (1); (2) kết hợp với $(2,3)$ nguyên tố cùng nhau suy ra \(k\vdots 6\)