Tìm n
a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n}\) (n>=1)
b)\(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\) (n thuộc N )
tính
-2.-\(1\dfrac{1}{2}.\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{n}\right)\)
với n thuộc N, n khác 0
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
b) 273: 93
c) 1252 :253
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
Tính tổng: \(S=\dfrac{3}{1^2.3}+\dfrac{5}{\left(1^2+2^2\right).4}+\dfrac{7}{\left(1^2+2^2+3^2\right).5}+...+\dfrac{2n+1}{\left(1^2+2^2+3^2+...+n^2\right).\left(n+2\right)}\)
(mấy chế làm giùm đi , nhanh nhanh giùm nhen,mai học rồi)
cho A=\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+........+\dfrac{2n-1}{\left(n-1\right)^2.n^2}\)
CMR:A<1
1tính:bạn nào làm được thì nói nhiều câu để mìng cho nhiều sp:
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+\dfrac{1}{n}\left(1+2+3+4+.....+n\right)\)nói luôn cả công thức nhé
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
b)\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
cho A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)hãy so sánh A với \(\dfrac{-1}{2}\)
a) tính : \(B=\dfrac{2.1+1}{\left(1\left(1+1\right)\right)^2}+\dfrac{2.2+1}{\left(2\left(2+1\right)\right)^2}+....+\dfrac{2.99+1}{\left(99.\left(99+1\right)\right)^2}\)
b) cho \(3a^2+b^2=4ab\). tính giá trị biểu thức \(P=\dfrac{a-b}{a+b}\)
c)cho \(N=0,7.\left(2007^{2009}-2013^{1999}\right)\). CMR N là 1 số nguyên
Tìm m,n\(\in\)Z:
\(2^{-1}\times2^n+4\times2^n=9\times2^5\)
\(2^m-2^n=1984\)
\(\dfrac{1}{9}\times27^n=3^n\)
\(\left(\dfrac{4}{9}\right)^n=\left(\dfrac{3}{2}\right)^{-5}\)
\(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(-\dfrac{512}{343}=\left(-\dfrac{8}{7}\right)^n\)