Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy ?
cho hình thang MNPQ ( MN là đáy nhỏ) hai đường chéo MP và NQ cắt nhau tại O. Biết NMP=MNQ , qua O vẽ đường thẳng EF // PQ (E thuộc MQ, F thuộc NP) chứng minh NMQP, FEQP , MNFE là hình thang cân
Cho hình thang cân ABCD có hai đáy AB// CD. Gọi I là giao điểm của 2 đường chéo AC và BD . Đường trung trực của AD và DI cắt nhau tại O. Chứng minh rằng OI vuông góc với BC.
#hinh_thang_can_ABCD
cho hình thang cân ABCD có ab//cd gọi o là giao điểm của 2 đường chéo gọi E là giao điểm của 2 đường thẳng chứa 2 cạnh bên . chứng minh rằng chứng minh EO là đường trung trực của AB
cho hình thang cân ABCD có ab//cd gọi o là giao điểm của 2 đường chéo gọi E là giao điểm của 2 đường thẳng chứa 2 cạnh bên . chứng minh rằng chứng minh eo là đường trung trực của AB
Một hình thang cân có đường chéo vuông góc với cạnh bên, cạnh bên và đáy nhỏ cùng bằng 1cm. Tính độ dài đáy lớn và đường chéo của hình thang đó
Cho hình thang cân ABCD có đáy AB song song với CD và AB < CD.
a) Gọi I là giao điểm của hai đường chéo hình thang ABCD. Chứng minh
IA = IB, IC = ID.
b) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là đường trung
trực của đoạn AB vừa là đường trung trực của đoạn CD.
c) Tính các góc của hình thang ABCD nếu góc ABC - ADC = 180 độ.
Hình thang cân ABCD (AB //CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy ?
Cho hình thang cân ABCD có đáy nhỏ AB và đáy lớn CD.Gọi I,J lần lượt là trung điểm AB,CD.Chứng minh:IJ là đường trung trực của đoạn thẳng AB