Rút gọn các biểu thức :
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
c) \(\sqrt{10+2\sqrt{9}}-\sqrt{9}\)
1.)\(\sqrt{11+4\sqrt{6}}\)
2.)\(\sqrt{7-4\sqrt{3}}-\sqrt{8+2\sqrt{15}}\)
3.)\(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4.)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
5.)\(\sqrt{4a^2-12a+9}vớia\ge\dfrac{3}{2}\)
6.)\(\sqrt{a^2-6a+9}+\sqrt{9+64a^2-48a}với\dfrac{3}{8}< a< 3\)
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Tính
a/ \(2\sqrt{\dfrac{9-\sqrt{77}}{2}}-\sqrt{\dfrac{2}{10-3\sqrt{11}}}\)
b/ \(\left(\sqrt{13}-1\right)\sqrt{\dfrac{2}{7-\sqrt{13}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(a,\frac{2}{\sqrt{13}-\sqrt{11}}+\frac{5}{4+\sqrt{ }11}-\sqrt{52}
\)
b,\(\sqrt{6+2\sqrt{5}+\sqrt{9-4\sqrt{5}}-\sqrt{20}}\)
Cho P = \((\dfrac{\sqrt{x}-3}{\sqrt{x}+3}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{14}{9-x})\times\dfrac{\sqrt{x}-3}{2}\)
CMR \(P\ge4\)
So sánh:
a) 2\(\sqrt{31}\) và 10
b) -3\(\sqrt{11}\) và -12
c) 6+\(2\sqrt{2}\) và 9
d) \(\sqrt{2}+\sqrt{3}\) và 3
e) 9+ \(4\sqrt{5}\) và 16
f) \(\sqrt{11}-\sqrt{3}\) và 2
\(\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{11\sqrt{x}-3}{9-x}+\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Rút gọn
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)