Cho tam giác abc có bc=a ca=b ab=c (b khác c) diện tích s biết b^2+c^2>=2a^2 1) chứng minh 4S/(tanA)>=a^2 2) gọi o g lần lượt là tâm đg tròn ngoại tiếp và trọng tâm tam giác abc M là trung điểm bc chứng minh góc MGO không nhọn
Cho tam giác ABC có A(-1;0) , B(4;0) , C(0;m) và m khác 0. Gọi G là trọng tâm của tam giác ABC. Xđ m để tam giác GAB vuông tại G
Trong mp xOy cho tam giác ABC. bt A(3;-1) B(-1;2) I(1;-1) là trọng tâm của tam giác ABC. Trực tâm H của tam giác ABC có tọa độ (a;b). Tính a+3b
Cho tam giác ABC gọi I là tâm đường tròn nội tiếp tam giác ABC, biết \(IG\perp IC\). CMR \(\dfrac{a+b+c}{3}=\dfrac{2ab}{a+b}\)
Cho tam giác ABC. CMR
\(a.\sin A+b.\sin B+c.\sin C=\dfrac{2\left(m_a^2+m_b^2+m_c^2\right)}{3R}\)
cho tam giác ABC trọng tâm G Chứng minh
cot C - cot \(\widehat{AGB}\) = \(\frac{a^2+b^2+c^2}{6S}\)
Cho tam giác ABC, đương cao BH. Đăt BC= a, CA=b,AB=c, AH=c' . Chứng minh
a) Nếu A<90 độ thi a^2 = b^2 + c^2 - 2bc'
b)Nếu A>90 thi a^2 = b^2 + c^2 + 2bc'
Tam giác ABC có gì đặc biệt nếu thõa mãn:
cos(B - C) = (2bc)/a^2
B,C,A góc tam giác
AB = c ; AC = b ; BC = a
.Giúp mình với. Cmr trong tam giác ABC ta có:
a, sinA + sinB +sinC = 4cosA/2.cosB/2.cosC/2
b, tanA +tanB + tanC= tanA.tanB.tanC