Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kimian Hajan Ruventaren

Cho tam giác ABC. CMR

\(a.\sin A+b.\sin B+c.\sin C=\dfrac{2\left(m_a^2+m_b^2+m_c^2\right)}{3R}\)

Nguyễn Ngọc Lộc
25 tháng 1 2021 lúc 23:11

- Áp dụng định lý sin ta được :

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow\left\{{}\begin{matrix}sinC=\dfrac{c}{2R}\\sinB=\dfrac{b}{2R}\\sinA=\dfrac{a}{2R}\end{matrix}\right.\)

VT = \(\dfrac{a^2}{2R}+\dfrac{b^2}{2R}+\dfrac{c^2}{2R}=\dfrac{a^2+b^2+c^2}{2R}\)

Lại có \(\left\{{}\begin{matrix}m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\\....\end{matrix}\right.\)

\(\Rightarrow VP=\dfrac{b^2+c^2+c^2+a^2+a^2+b^2-\dfrac{a^2}{2}-\dfrac{b^2}{2}-\dfrac{c^2}{2}}{3R}\)

\(=\dfrac{\dfrac{3}{2}\left(a^2+b^2+c^2\right)}{3R}=\dfrac{a^2+b^2+c^2}{2R}=VT\)

=> ĐPCM


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Dương Anh
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
Tùng
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Trần Nam Long
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết