Cho các số thực a;b;c;d;e khác 0 thỏa mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\) . Chứng minh rằng : \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện :
M= a+b=c+d= e+f
Biết a,b,c,d,e,f\(_{ }^{ }\in\)N* và \(\dfrac{a}{b}=\dfrac{14}{22}\); \(\dfrac{c}{d}=\dfrac{11}{13}\);\(\dfrac{e}{f}=\dfrac{13}{17}\)
CÁC BẠN GIÚP BẠN Heo Mách VỚI NHA!!!!!
1) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR(với giả thiết các tỉ số đều có nghĩa)
a)\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
b)\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
c)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
d)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
e)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
cho \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}CMR:\dfrac{a}{b}=\dfrac{c}{d}\)
1) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR(với giả thiết các tỉ số đều có nghĩa)
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR ta có các tỉ lệ thức sau
a)\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b)\(\dfrac{7a1^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)
3) CMR nếu \(a^2=bc\) thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\). Đảo lại có đúng không?
4) CMR nếu \(\dfrac{a}{b}=\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)
5) Cho tỉ lệ thức \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}.CMR\dfrac{a}{b}=\dfrac{c}{d}\)
các bn giúp bn Heo Mách với nha
a, cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (b,d \(\ne\)0) CMR:\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b,cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b,d \(\ne\)0) CMR:\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho các số nguyên dương a,b,c,d,e,f biết :
\(\dfrac{a}{b}>\dfrac{c}{d}>\dfrac{e}{f}\) và \(af-be=1.CMR:d\ge b+f\)
cho dãy tỉ số bằng nhau\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b}\) =\(\dfrac{a+b+2c+d}{c}\)=\(\dfrac{a+b+c+2d}{d}\)
tính giá trị của biểu thức M= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
cho \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{d}=d+\dfrac{1}{a}\) CMR: a=b=c=d hoặc /abcd/=1