gt \(\Rightarrow\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=ka'\\b=kb'\\c=kc'\\a+b+c=k\left(a'+b'+c'\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}aa'=ka'^2\\bb'=kb'^2\\cc'=kc'^2\\\left(a+b+c\right)\left(a'+b'+c'\right)=k\left(a'+b'+c'\right)^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\\\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k}\left(a'+b'+c'\right)\end{matrix}\right.\) => đpcm