Lời giải:
Để thuận mắt hơn ta sẽ đi CM:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2<0\)
Thật vậy:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2\)
\(=(a^4+b^4+2a^2b^2)+c^4-4a^2b^2-2b^2c^2-2c^2a^2\)
\(=(a^2+b^2)^2+c^4-4a^2b^2-2c^2(a^2+b^2)\)
\(=(a^2+b^2-c^2)^2-4a^2b^2\)
\(=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)
\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)
\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)
\(=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)\)
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên:
\(b+c-a>0; a+c-b>0; a+b-c>0; a+b+c>0\)
\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)<0\)
Ta có đpcm.