Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
 ♫ Love Music  ♫

CMR:

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

Nguyễn Thanh Hằng
12 tháng 9 2017 lúc 17:06

Ta có :

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.........+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+......+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+.....+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+......+\dfrac{1}{50}\)

Vậy ...

 Mashiro Shiina
12 tháng 9 2017 lúc 17:03

Đặt:

\(PHUCDZ=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(PHUCDZ=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(PHUCDZ=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)

\(PHUCDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

Đặt \(PHUCMAXDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(PHUCDZ=PHUCMAXDZ\) vậy ta có \(đpcm\)

Heartilia Hương Trần
12 tháng 9 2017 lúc 17:08

Ta có : \(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) +...+ \(\dfrac{1}{49.50}\)

= (1-\(\dfrac{1}{2}\)) + (\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) + (\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)) + ... + (\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))

= (1+\(\dfrac{1}{3}\) +\(\dfrac{1}{5}\)+....+\(\dfrac{1}{49}\)) - ( \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{6}\)+...+\(\dfrac{1}{50}\))

=(1+\(\dfrac{1}{3}\)+\(\dfrac{1}{5}\)+...+\(\dfrac{1}{49}\)) - 2(\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{6}\)+...+\(\dfrac{1}{50}\))

= (1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{50}\)) - (1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{25}\))

=\(\dfrac{1}{26}\)+\(\dfrac{1}{27}\)+...+\(\dfrac{1}{50}\) (đpcm)

Đạt Trần
30 tháng 12 2017 lúc 19:48

undefined


Các câu hỏi tương tự
Khánh Huyền
Xem chi tiết
Nguyễn Trọng Đức
Xem chi tiết
Tanya
Xem chi tiết
Hòa Đình
Xem chi tiết
meme
Xem chi tiết
chíp chíp
Xem chi tiết
Mounho Phạm
Xem chi tiết
Nguyễn Lê Thảo Mai
Xem chi tiết